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The solation of problems on the optimal control of linear systems reducible to the L«problem
of moments is described. This involves reducing the problem in question to one in linear
programing.

The linear programing method makes it poasible to reduce automatic extremum search
time. The general computational scheme is illustrated by solving several model problems.

1. Let a controlled system be described by the vector differential Eq.
dzfdt = Az + bu . (1.1)
Here 1 denotes the n-dimensional vector of the phase coordinates of the controlled ob-
ject and u a scalar function describing the controlling force.

Let us consider the following problems.
ProblemA., To find the function u®(z) (the optimal control) which satisfies restric-

tion {u°(¢)] < 1 and brings system (1.1) from the given initial position 24 to the origin in the
smallest possible time 79,
Problem B. To find the optimal control u™¢) which in a given time T brings system
(1.1) from the state z, to the state 2{I') in such a way that
T
J (u) = max {maxt lue@ 1o ju@ dr} = min (6 = const) (1.2)
o
Problem C. To find the optimal control u°(7) which brings system (1.1) from the
initial position 24 to the origin in the shortesat time TYin such a way that the restriction
T
S[u(‘r)ldt:i (1.3)
o

imposed on the control function is fulfilled.
The solations of the above problems, all considered from the common standpoint of the

L-problem of moments, are obtained in [1 and 2] and are as follows:
The optimal control for Problem 4 is

n
u° (%) = sign (2 L°h; (1)) (1.4)
ol
where the numbers l,° (i = 1,440y n) are the solution’of the problem
T =n n
min;S ‘Z Liby (1) | dx =1, 3 tiey =1 (.5
¢ d==1 jan]

The optimal control for Problem B is
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n
u® (T) = %. Sign 2 Iiohi (T) for TE A®

=1 (1.6)
u® () =0 for TEA*

where the numbers ,° and the systems A° of the segments [Tks Ti#y] on fo, 7] are deter
mined by the solution of the problem

n n
min; max, S \ 2 Lihs (1) I dt=a, 2 Lo ==
A i=1 i=1
. (1.7)
mes, == min {671, T}
The optimal control for Problem C is
r® r
u (1) = ) ud (v — 1)), 2 Inil=1 (1.8)
i=1 j=1

where the symbol 8(7) is a pulse delta function and 7, are the instants at which the func-
tion [ll°h (T) 40t ln°hn(‘T)] reaches its maximum value on the segment [0, T0); the
numbers [ ° are the solution of the problem

n n
min (maxt { ?:‘1 Ik (1)\ for 0<T< T°)= 1, E; La=1 (1.9

In Formulas (1.4) to (1.9) we have

n
hy (7) = ) fi (— ) by, 6= —Zy
i=1
where fj; (t) are the elements of the fundamental matrix F () of homogeneous system (1.1).

In actual computation of optimal controls it is necessary to solve problems (1.5), (1.7),
and (1.2). This can be done by numerical methods. The usual way of finding min;in problems
(1.5) and (1.7) is by the method of steepest descents [3 and 4. The latter method is applied
in Problem 4 to the functien

T n-1
Path it )={ e+ 3 gy (0] (1.10)
0 i=1

gi (V) =h; (7) +-§f:-hn (t)y  gan (‘t):"&%‘hn (v, (=1....n—1) (c,50)

for a fixed T,
In Problem B the method of steepest descents is applied to the function

n-1
pp ol = § e+ L] (1.14)
A i=1

under the assumption that the system A (!) of segments [ 7y, Ti 4] which yields the max in
(1.7) has already been chosen.

In automatic search for the extrema of functions (1.10) and (1.11) by the method of stee~
pest descents or by some other local search (e.g. the gradient or the relaxation) method one
is faced with difficulties occasioned by the structural properties of these functions. There
are very frequent cases where the functions p, and p 5 are so structured that changes in
some of the variables produce relatively small changes in the values of the functions (this
occurs,for e xample, with surfaces of the ““trench’® type with steep aides and a very mildly
sloping floor) . Search for the extrema of such functions involves rapid breakup of the operas
ting interval; this slows down the search considerably or else stalls the computer in some
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secondary ‘‘mild depression’’.
The use of the nonlocal search method (also known as *‘trench’’ method) described by
Gel’fand [5] expedites the search process. However, the total search time is still large.
The time required to find the extrema of functions (1.10) and (1.11) can be decreased
substantially by reducing the problems of minimizing the functions p, and pg to certain

problems of linear programming.
We note that the proposed computational scheme is in a sense similar to the convex pro-

graming methods developed by Pshenichnyi {6 and 71.

2. Let us break down the segment [0, T] into m equal parts at the points 7; = IANT (=
= 0,0, m). For a sufficiently large m we can write (1,10} in the form
m n-1

PEIREL DY l D) LB () + 8n (v) (2.1
j=1 is=1
Let us consider the system of linear functions
n-1
BO=D ket +ealr)  G=1,...,m) 2.2)
{aml

The problem of minimizing p 4* is then equivalent to the following problem of minimizing
a convex piecewise«linear function:

m
v =D ¥, - - 11y )] (2.3)
j=1
The problem of minimizing (2.3} can be reduced to a linear programing problem [7 end 8].
To effect this reduction we introduce the additional veriables xy,..., x ,, setting

ly; (<= or zj+yi () >0, zj— yj (1) >0 (2.9)
The problem of minimizing (2.3) is now equivalent to the following linear programing prob.
lem of minimizing the function

L=z -+ ...+ 2m {2.5)

under restrictions (2.4).
In fact, let L = min L under restrictions (2.4) and let it be attained at the point (I”, x*);

let v’= min v and let it be attained at the point }’. The Eqs. x,” = |y, (1*")| are clearly ful-
filled at the point (I”, x”), since x,"}ly, (I”"}| by virtue of (’2.4), and since the correspon-
ding %, can be reduced in searching for min L in the absence of the equality sign for certain

in H“cc;

L'=E 7y = 2 lys @ > v (2.6)

j=al j==1
Now let x,”= |y, I”)| . The point (I *, x) then satisfies restrictions (2.4), so that

m m
L'<Y o= lyy) =7 @n
Jumy Jjoeal
From (2.6) and (2.7) we conclude that L “= v’ and !** from the solution (i, ”*) of prob-
lem (2.4), (2.5) is also the solution of problem (2.3),
As a typical problem of linear programiag, minimization of function (2.5) can be effected
by the simplex method.
Weo note that the linear programing problem for finding the minimum of the function p g can
be constructed as described above.
Now let us oonsider the problem of finding the extremum of the function
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n-1
L@+ Juam|) o<t<n ey

i=1

pellny - sl J= ming(max,

This is the problem to which we can reduce finding the minimum of the function in the
left-hand side of Eq. (1.9) for a fixed T. Determination of this minimum is one of the steps
in the solution of problem C.

We assume once again that the segment [0, 7] has been broken up into m equal parts at
the points 7, = JAT G =0y, m).

Now let us consider the vector function ¢{l, 7) with the components

n-1
%=t + N he)|  G=t....m (2.9
i=1
and the set M of vectors S,
85={0,'...,0,1,...,0} G=1,...,m)
i
For a sufficiently large m problem (2.8) can be approximated by the problem
pc (I) = p* = min; (max, (¢ (L, 7), 9)]) sE M) (2.10)
Here the symbol (¢, s) denotes the scalar product of the vectors ¢ and s.
Let us consider the system of livear functions
n-1
i =gn() + D Ugi(x)  G=1....m (219
i=1
The problem of minimizing the piecewise-linear convex function

v (1) = maxg (@ (I, T), ) (s M) (2.12)

is the Chebyshev problem of approximating system {2.11). This can also be reduced to a
linear programing problem [8].
To this end we introduce the new variable x,, setting
% (L 1) < 2 G=1,...m (2.13)
The equivalenat linear programing problem can be formulated as follows.
We are to minimize the function

L= z (2.14)
under the restrictions
n-1 n-1
Zo - gn (T5) + 2 Lgi(t) =0,  wo—gn(T5)— E Ligg (t) >0 (2.135)
[ES § j==

Let us show that the solution of problem (2.14), (2.15) is at the same time the solution
of problem {2.10). Let L *= min x, under restrictions {2.15) and let it be attained at the
point {{*, x).

It is then clear that

L' = z)’ = max, (¢ (I, 1), s) > min; [max, (@ (I, T), s] = p* (s&E M)

On the other hand, if /” is some Chebyshev point of system (2.11), we have ¢,U”, 7)) &
£p 2 (= 1., m). This means that the point (I”, x, = p *) satisfies restrictions (2.15).
Bx:t since L “is the minimam value of x, under restrictions (2.15), it cannot exceed Pt e
L'gpt.

From these two inequalities we conclude that p * = L, Hence,

po* = max, (@ (I, 1), s) = min; [max, (@ (I, 7), 9] (seE M)

i.e. the point [’ is the solution of problem (2.10) for p * = x 4"

In conclusion we note that problem (2.14), (2.15) can be solved by the simplex method.
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8. Fxample 1. Letussclve the problem of shortening the time required to bring
a gyrocompass to a given meridian [9]. The gryroscope motion is described by Eqgs.
2 = g2+ Gz + u (%), L= guik, 25 = Qg2 + dasZs (3.4)
Here
G = 3.74-107%, g3 = 2.32+107%; ¢y = — 4.11 1075,
9oz = — 1.5+1073, gg5 = — 1.5-107F
The problem of bringing system (3.1) to the origin in a fixed time 7 under the condition
of minimality of the norm fu K of the controlling function (| u | = max, |u(7)|,0< 7L T)
reduces to the problem [1} of finding
T| 8

min; Z‘h’n (V) |de=p (r)--—lT;t—t| (1y6y Hilgeg 4= Les = 1) (3.2)
o =1
Here
T = 1800 cex, ¢, = 2.87 1072, g = 1,39 1072, ¢y = — 1.01+10-2
hy (1) = a7 4 T (b, cos @ (T — %) — ¢y sin @ (T — 1))
By (1) = g7 4 &%) (bgy cos @ (T — 1) — ey sin@ (T — 1))
g (1) = ag €77 4 T (b, cos @ (T — 1) — ¢y sin 0 (T — 7))
z= — 0.8824-10-8, e = — 0.3088+10"%, o = 0.9481+10-3
ay = — 4.438 1071, gy = — 0.0207, ag; = 0.0503
by = 1.444, by = 0.0207, by = — 0.0503
ey = — 0.0572, ¢y = 0.0559, ¢y = — 0.0304
On eliminating /3 we can rewrite {3.2) as (3.3)
0] 99 7
= min S W1gdl(x) -+ laga (%) + g5 (%) | d¥
1yte 0
f1{(1)= hy (‘E) —_ %}13 (T) (3.4)

g2 (T) = hy () — gha (¥), gs(v) :__21; ks (%)

The functions gy, g4, and g3 are plotted in
Fig. 1. The linear programing problem for solution
(3.3) can be written as

L=z4+...+ 2, (3.5)
under the restrictions
25+ 1,y (T) + lags (7)) + g3 (1)) 2> 0
25— 1,8 () — Laga (7)) — £ (t) =0 (3.6}
=1,....m

In order to make the solution of the above opti-
mal problem more accurate we must choose ourm
sufficiently large. This imparts a large dimension-
ality to linear programing problem (3.5}, (3.6}, For
example, for m = 50 the initial matrix for solving
the problem by the simplex method has the dimen=
sionality (98 x 196). The dimensionality of the
linear programing problem can be reduced without
Fig. 1 diminishing the accuracy of the initial problem by
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computing integral (3.3) as a sum of trapezoid areas. In this case the segment T = 1800 sec
breaks down into 14 unequal parts. The average values of the ordinates

& (v*), &3 (%), &5 (t;*)
of functions (3.4) are given in the table.

Problem (3.5), (3.6) for the values

i Arj & (7% 83 (v;%)-107| g5 (1;*) of gl('r, ), gz(’Tl ), and 53(7'1) given in
the table was solved by the simplex
11187.5 —8.(1)823 g.i&gg —3-% method. This yielded
21300 . —0. —2.
3 | 300 0.2723 —0.6447 | —2.077 I, = —1.143, 10 = —162.5
é 1?8 8?35?.5 :(1)?15 ___13';25 The resulting value of p® was p’=
6| 75 0.695 —1.162 —0.962 = 2228. ) )
71 75 0.751 —1.163 —0.795 Hence, the required optimal control
8| 75 0.804 —1.138 —0.636 in accordance with (1.4) turned out to
1k B AE: I
10| 75 | 0.8935 : —0.: _ s o
11| 75 | 0.9295 —0.876 | —0.237 uf (1) = 0.448+10~% sign (3.7)
12| 75 | 0.959 —0.718 | —0. _ _
13| 75 | 0.981 —0.52 " 0.0667 (— 1-143 &1 (1) — 162.5 g, (7) + & (7))
14 | 112.5] 0.9948 | —0.205 | —0.0181 The motion of system (3.1) under

the action of control (3.7) is represen-
ted by the plots of the functions Z ((T),
z2,(7), and z4(7) in Fig. 2.
Example 2, Letus con-
sider.the problem of coming to
rest of a linear oscillator,

7)) =12y, 2B = — z, -+ u(1);

x_m, 5 (0) = —1, z,(0) = 0(3.8)
/ ——Irsec in the time T = 1.18 under the con-

-art /0'22/17 dition of a minimum momentum

T

. 0448 10° W)
02 J () = S fu(e) |dv  (3.9)
. 0
Fig. 2 In accordance with (1.9) we
can solve this problem by finding
p° = min; (max_ |k (7) + lhy (T)], 0<1<1.18) (3.10)

where
hy(¥) = —sint, bhy(tr) =cosT
We can solve Problem (3.10) by reducing it to a linear programing problem. To this end
we break down the segment [0, T)into nine segments by means of the points 7; = 0.131 (j =
= 0,...; 9). The equivalent linear programing problem can be formulated as follows, We are
to find the minimum of the form

L = gz, (3.11)
under the restrictions

2o+ hy () + Lihy () >0, 2o — hy (1)) — Ly (1) >0 (G =10,...,9) (3.42)

Problem (3.11), (3.12) was solved by the simplex method. The optimal value of the para-
meter !, is [,°= 0.668. The function

g (t) = | — sin T - 0.668 cos 7) | (3.13)

is plotted in Fig. 3. From this plot we see that the function g (7) attains its maximum values
in the segment [0, 1.18], i.e. the values p %= 0.668 at the points 7, = 0, T, = 1.18. Hence,
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Fig. 3 Fig. 4
in accordance with (1.8) the optimal control is of the form
w0 (1) = p,d (v ~— 0) + pyd (v — 1.18) (3.44)

To determine the quantities j , and 1, appearing in Formula (3.14) we make use of the
stipulation that the representing point must reach the origin at the instant 7 = 1.18. This
condition implies the following Egs.:

1.18
1=— S sin T [18 (T — 0) -+ pab (v— 1.18)] d
o
1.18
0= S €087 [J16 (1 — 0) + b (v — 1.18)] dv
0

Carrying out the integrations, we obtain
py = 0.415, py = — 1.083 {3.15)

The optimal control with allowance for (3.15) is shown in Fig. 4.
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