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The l olotion of problems on the optimal control of linear aymtemlr reducible to the t-problem 
of momenta ir deecrlbed. This involves reducing the problem in queetion to one in linear 
PWSraming* 

The linear programing method makea it possible to reduce automatic ertremom aearch 
time. The general compatational scheme is illoetrated by solving several model problema. 

I. Let a controlled aylrtsm be described by the vector differential Eq. 
dz/dt=Az+bu. @.i) 

Here z denote8 the n-dimensional vector of the phase coordinatea of the controlled ob- 
ject md a a scalar function describing the controlling force. 

Let oa conaider the following problems. 
P r o b 1 e m A. To find the function u’(t) (the optimal control) which eatiafies rcatric- 

tion lu”(r)l 5 1 aad bring ayetem (1.1) from the given initial position x0 to the origin in the 
smalleot poseible time ~‘0. 

P r o b 1 e m B. To find the optimal control u%) which in a given time 2’ brings system 
(1.1) from the state to to the state z(T) in such a way that 

Jtu)=~a={mal,lY(I)I.eT,.(~,jdr)=min (6 = const) 62) 
0 

P r o b 1 e m C. To find the optimal control u*(7) which brings aystem (1.1) from the 
initial position z. to the origin in the sborteat time Toin aach a way that the restriction 

T 

s 
[24(7)1d%=‘i 0.3) 

imposed on tbt control fnnction is Cl&led. 
The solutions of the above problems, all considered from the common standpoint of the 

L-problem of momenh, are obtained in [ 1 aud 21 and am aa followm: 
The optimal control for Problem A im 

n 

where the numbera 1,’ (i = l,,,., n) are the rolntion’of the problem 

(f-4) 

(W 

The optimal control for Problem B in 

138 
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where the numbers fl* and the systems A* of the segments CT&, Tkc.11 on [O, ~1 are deter- 
mined by the solution of the problem 

i=l 

mes, = min [e-l, T] 

The optimal control for Problem C is 
r* 

(4.7) 

j=l j=l 

where the symbol 6 (7) is a pulse delta function and 7, are the instants at which the func- 
tion [I *h (7) + . ..+ 1,” h,(7)] reaches its maximum value on the segment [O, To]; the 
llumberfe 1 p are the solution of the problem 

In Formulas (1.4) to (1.9) we have 

hi (r) = i iij (- t) 6jv 

j=l 

q = - zio 

where fii (t) are the elements of the fundamental matrix F (t) of homogeneous system (1.1). 
In actual computation of optimal controls it is necessary to solve problems (l.S), (l.?), 

and (1.2). This can be done by numerical methods. The usual way of finding minf in problems 

(1.5) and (1.7) is by the method of steepest descents [3 and 41. The latter method is applied 
in Problem A to the fnnction 

T n-1 

PA (b . . . 9 l,_,) = 1 \gn(@ + 2 4gr ('~1 Idr (1.10) 

0 i=l 

g{ (Z) = hi (T) + “i 
c, hn W? &a w = $ h, (Z), (i=i,...,n-1) (Cn # 0) 

for a fixed T. 
In Problem B the method of steepest descents is applied to the function 

n-i 

Pg (ill . . . 1 I,_, = 1 
3. (0 

1 gn (7) + z 4gf (t)l dr 
i-1 

(l.il) 

under the assumption that the system A(I) of segments [7k1 Tk+tl which yields the max in 
(1.7) has already been chosen. 

In automatic search for tbe extrema of functions (1.10) and (1.11) by the method of stee- 
pest descents or by some other local search (e.g. the gradient or the relaxation) method one 
is faced with difficulties occasioned by the structural properties of these fimctions. There 
are very frequent cases where the functions pA and ps are so structured that changes in 
some of the variables produce relatively small changes in the values of the functions (this 

occurs,for example, with surfaces of the “trench” type with steep aidea and a very mildly 
sloping floor) . Search for the extrema of such functions involves rapid breakup of the opern- 
ting interval; this slows down the search considerably or else stalls the computer in some 
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secondary “mild depmsmfon”. 
The use of the naaloal l eweh method (a100 known as ‘*trench” method) described by 

Gel’fahd [5] expedites the search process, However, the total aearch time is still large. 
The time reqaimd to find the extrema of functions (1.10) and (1.11) can be decreased 

sabstentially by reducing the problems of minimizing the functions pA and pB to certain 
problems of linear programming. 

We note that the proposed computational scheme is in a sense similar to the convex pro- 
graming methods devaloped by Pshenichnyi [6 and 71. 

2. Let us breah down the segment [0, T] into m equal parts st the points ~j = EAT fj = 
-0 ,..., ml. For a sufficiently large m we can write (1.10) in the form 

Let us consider the system of lfnesr fcnctfona 
n-t 

If (4 s 2 ki trj) + Bn (*j) (j=l,...,m) 
t-1 

The problem of minimizing p,,+ is then equivalent to the following problem of minimizing 
a convex piecewise-linear function: 

m 

v (1) = 23 I ?/,fk, . * . *in-J I (2.3) 

j-1 

'be problem of minimizing (2.3) can be reduced to a I&ear programing problem [7 and 81. 
To effect this reduction we introduce the additional variables it,..., r, setting 

19/j(l) I QZj or =j + Vj (4 > 0, zj - Yj (I) 20 (2.4) 

The problem of minimixing (2.3) is now eqaivaleut to the following linear programing prob- 
lem of q infmfxfng the function 

L = 2, + * * ‘ + 2, (2.5) 

nndar restrictions (2.4). 
In fact, let L “C‘I mfn L under restribio~s (2.4) and let it be attained at the point (r”, r”); 

let v’- mfn v md fat it be attained at the point 1’. The Eqs. x “a ( IY, (I“) I are clearly ful- 
filled at the point (I”, x”), since x1 “>, Iy, (1”) 1 by virtue of 2.4), and since the correspon- 
ding x1 cau be redaced in searching for min L in the absence of the equality sign for certain 
i. Hence, m m 

L’ = 2 zf = 2 1 yj (l’) 1) v’ 

j-4 jP1 

Now let xI ‘- Iy, (I') 1 * The point (I ‘, x’) then satf8fies restrictions (2.4). 60 that 

L’<; xj=$J lYj(I’)f=u’ (2.7) 

j-1 j=-1 

From (2.6) rpld (2.7) we conclude that L “- v’ and 1” from the solution Cl”, xc.) of proC 
lem (2.41, (2.5) fa also the solc~tion of problem (2.31. 

Ao a typial problem of llnw progunk6( minimfxatfon of fnnctfon (2.5) can be effected 
by the sfrnplex method. 

We note that the linear progzahg problem for findfng the minimum of the Cnctfon pi can 
be carstnded as demodbed abom 

Now 18; #m oonsfder tfte problem of finding the extremum of the function 



Application ojprogroming to problems of the control theory 141 

n-l 

This is &e problem to which we can reduce finding the minimum of the fimcti~n in the 

left-hand side of Eq. (1.9) for a fixed ‘I’. Determination of this minimum is one of the steps 

in the solution of problem C. 
We assume once again that the segment 10, ~1 h as been brokeu up into m equal parts at 

the points 7, = jh7 Q = O,...t m). 

Now let IIS condder the vector function #(l, 7) with the components 

n-1 

‘Pj (I* rj) = 1 gn (Tj) + 2 &gi (rj) 1 (j=i,...,m) (2.9) 
i=l 

and the set M of vectors s, 

Sj={O,...,O,1,...,0,) 
- 

3 

(j=I,...,m) 

For a sufficiently large m problem (2.8) can be approximated by the problem 

Pc(0=PP,* = mini (max, (cp (I, r), 41) (s E MI 
Here the symbol (4, a) denotes the scalar product of the vectors 4 and a. 
Let us consider the system of linear functions 

n-1 

Yj (z) = gn trj) + 2 ligi (rj) (i=1,*..,m) 

i=l 

(2.10) 

(2.11) 

The problem of minimixing the piecewise-linear convex function 

v (t) = maxs (cp (L T), 4 (SEMI (2.12) 

is the Chebyshev problem of approximating system (2.11). This can also be reduced to a 

linear programing problem [8]. 
To this end we introduce the new variable zo, setting 

‘Pj (II Tj) d 20 (f = 1, . . ., ml 

The equivalent linear programing problem csn be formulated as follows. 
We are to minimize the function 

(2.13) 

under the restrictions 
L = 2, (2.14) 

n-1 n-1 

5 + gn ttj) + x liSi (rj) >, 8, 2O - gn (fj) - x lik?f (r j) > O (2.15) 

2=1 i-1 

Let us show that the solution of problem (2.14), (2.15) is at the same time the solution 
of problem (2.10). Let L ‘a min xo under restrictions (2.15) and let it be attained at the 

point (l’, x). 

It is than clear that 

L’ = zO’ = maxI ((p (I’, r), s) > mini [max, (cp (I, Q, sl = PC* (SEEM) 

On the other hand, if 1”is some Chebyshcv point of system (2.11), we have (bj(l”, ~j)d 

4< pb (j = l,..., m). This means that the point (i”, xo = p =*) satisfies restrictions (2.15). 

But nince L ’ is the minimum value of xo under. restrictions (2.15). it cannot exceed pc+, i.e. 

L’Cp,,. 
From these two inequalities we conclude that p * = L ‘. Hence, 

pc* = max,, (cp (I’, z), s) = mini imax, ((P (2, r). #)I (rEM) 

i.e. the point 1’ ia the solution of problem (2.10) for pa* = x0’. 

In conclnaion we note that problem (2.14), (2.15) can be solved by the simplex method. 
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9. E x a m p I e 1, Let us solve the problem of shortening the time required to bring 
a gyrocompass to a given meridian [9]. The gryroscope motion is described by Eqs. 

Here 

%a = 3.74 l 1O-2, g13 = 2.32*lWa, - 4.ii *10-b, 

QSP = 

The problem of bringin s stem (3.1) to the origin in a fixed time T under the condition 
of minimality Of the nO?!ll BK U 

reduces to the problem [l] 
of the controlling function (Ijz4II = inax, 1 u (7) 1 , O,< T,( T) 

of finding 

mini (3.2) 

Here 
T = 1800 ceK, c* = 2.87 *IO-Z, c2 = 1,39 *IO-S, ca = - 1.01 *iO-” 

h, (1) = nip-r) + P-‘) (bli cos w (T - 7) - cl1 sin 0 (T - z)) 

fa, (%I = aatcW-~t + ,‘O’-sJ (be, cas o (T - T) - cgl sin o (T - T)) 

h, (T) = ‘131 e”(*-=J + F--Q (bSl cos w (T - 2) - cg1 sin 0 (T - z)) 

x = - 0.8824 *1O-a, E = - 0.3088 *10-s, o = 0.9481 l 10-’ 

0x1 - - 4.438 *M-1, %?I = - 0.0207, a Lpi = 0.0503 

bll = 1.444, b,, = 0.0207, b,, = - 0.0503 

Cl1 = - 0.0572, CZl = 0.0559, C3L = - 0.0304 

On eliminating I, we can rewrite f3.2) as 

The functions glr g2, and g3 are plotted in 
Fig, 1, The linear programing problem for solution 
(3.3) can be written as 

L = xl’+. * . + zm (34 

U6 - 

aa- 

10 - 
i- v In order to make the solution of the above opti- 

mal problem more accurate we must choose our m 
sufficiently large. This imparts e large dimension- 
ality to linear programing probIem 13.51, (3.6). For 
example, form r= 50 the initial matrix for solving 

the problem by the simpler method has the dimen- 

@*z9&! 
sionality (98 x 196). The dimensionality of tbs 
tintat programhg prcrblem arm be reduced withont 

Fig. 3. diminishing the accuracy of the initial problem by 
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computing integral (3.3) as a sum of trapezoid areaa. In thirr case the segment T= 1890 aec 

breahs down into 14 unequal parta. The average values of the ordinatea 

81 (Sj% g, (qt 

of functions (3.4) are gfven in tbe table. 

.!?s uj*) 

Problem (3.5), (3.6) for the value6 

of gt(T, ), g&T,), and g&7,) given in 

the table was solved by the simplex 

method. This yielded 

II” = - 1.143, l,O = - 162.5 

The resulting value of p O was p” = 

= 2226. 

AVf I 81 (+j', 

187.5 300 --$zg 

300 0: 2723 
150 0.4745 
150 0.603 

;: 0.695 0.751 

;z 0.804 0.852 
75 0.8935 
75 0.9295 
75 0.959 

1z.5 0.981 0.9948 

gnJ (Tj*)'lO-' I t?3 (Tj.1 

0.385 
-0.102 
-6.6447 
-0.975 
A.11 
A.162 
-i.i63 
-1.138 
--1.1084 
-0.997 
-0.876 
-0.718 
-0.52 
-0.205 

Hence, the required optimal control 
in accordance with (1.4) turned out to 

be 

u0 (I-) = 0.448 *lo-* sign (3.7) 

-3.001 
-2.651 
-2.077 
-1.5765 
-1.223 
-0.962 
-0.795 
-0.636 
-0.489 
-0.354 
-0.237 

z*;;;7 (- 1.143 g, 0) - 162.5 g, 0) + gs 0)) 

-O:Oi8i The motion of system (3.1) under 
the action of control (3.7) ia recresen- 
ted by the plots of the functionb Zr(7), 

zr(~), and Z,(T) in Fig. 2. 

E x a m p 1 e 2. Let us con- 

sider-the problem of coming to 
rest of a linear oscillator, 

z1=zs, % 
*- 
- --1+ u(r); 

Zl (0) = - 1, % (0) = 0,(3.8), 

in the time T = 1.18 under the con- 
dition of a minimum momentum 

T 

J(u)=\Iu(T) Id? (3.9) 

6 
Fig. 2 

In accordance with (1.9) we 
can solve this problem by finding 

P” = minlt @ax, I h, 0) f J,h, (r) II 0 < z < 1.18) (3.10) 

where 

h, (7) = - sin r, h, (z) = co9 z 

We can solve Problem (3.10) by reducing it to a linear programing problem. To this end 
we break down the segment [O, ~1 into nine segments by meems of the points 7, = j 0.131 (j = 

= ,..., 0 9). The equivalent linear programing problem can be formulated as follows. We are 
to find the minimum of the form 

under the restrictions 

L = 2, (3.11) 

=o + h, (Tj) + I&, (‘Fj) z 0, 20 - h, (Tj) - I&, (rj) > 0 (i = 0, * * -1 9) (3.12) 

Problem (3.11), (3.12) was solved by the simplex method. The optimal value of the para- 
meter 1, is 1x0= 0.668. The function 

g 0) = I - sin r + 0.668 co9 z) I (3.13) 

is plotted in Fi . 3. From this plot we see that the function g(7) attains its maximum values 
in the segment 0, 1.181, tg i.e. tbe values p O= 0.668 at the points it = 0, 71 = 1.18. Hence, 
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in accordance with (1.8) the optfmal control is of the form 

no (x) = irib (x - 0) + p*b (x - 1.18) (3.14) 

To determine the qnantities #f t and @, appearing in Formula (3.14) we make use of the 
stipulation that the representing point muat reach the origiu at the instant T = 1.18. This 
condition implies the following Eqs.: 

1. 
2. 

3. 

4. 

5. 

6, 
7. 

8, 

9. 

1.18 

I=- s sinx[pJi(r-0)+*6 (T-i.i8)] dx 

0 

1.18 

o= 
5 

cosr~prs(Z-o)+~s(r-1.i8)]df 

0 

Carrying out the integrations, we obtain 

p1 = 0.415, ps = - 1.083 

The optimal control with allowance for (3.15) ia shown in Fig. 4. 
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